Using Square and Cube Numbers

Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3).

Square Numbers

The product of a number multiplied by itself. Can be illustrated as a square, e.g $2^2 = 2$ squared = $2 \times 2 = 4$

A. Complete the table.

1 ²	1 × 1	1
2 ²		4
3 ²	3 × 3	
	4 × 4	16
5 ²		
		36
	7 × 7	
8 ²		
10 ²		100

Cube Numbers

The product of multiplying a digit by itself three times. Can be illustrated as a cube, e.g. $2^3 = 2$ cubed = $2 \times 2 \times 2 = 8$

B. Complete the table.

1 ³	1 × 1 × 1	1
2 ³	2 × 2 × 2	
3 ³		27
	4 × 4 × 4	64
5 ³	5 × 5 × 5	
6 ³	6 × 6× 6	
		343
8 ³		512
	9 × 9 × 9	729
10 ³		

$\ensuremath{\text{C.}}$ Calculate the missing numbers.

a) $7^2 + 4^3 =$	b) 8 ² + 10 ² =	c) $5^3 - 5^2 =$
d) 5 ² + = 89	e) 8 ² = 17	$f) 3^2 \times 2^3 =$
g) 3 ² + = 5 ²	h) $6^3 \div 2^2 =$	i) 13 ² =
j) $10^3 - 2^2 =$	k) 100 ² =	l)² = 144

